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1
1 Expand (1+ 4x) 2 in ascending powers of X, up to and including the term in x>, simplifying the
coefficients. [4]
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. 1
The diagram shows a sketch of the curvey = 10,3 for values of x from —0.6 to 0.6.

(i) Usethetrapezium rule, with two intervals, to estimate the value of

0.6 1
dx,
J 1+x3

-0.6

giving your answer correct to 2 decimal places. [3]
(i) Explain, with reference to the diagram, why the trapezium rule may be expected to give a good

approximation to the true value of the integral in this case. [1]

3 (i) Solvetheequation z2 — 2iz — 5 = 0, giving your answersin the form x + iy where x and y are real.

[3]
(i) Find the modulus and argument of each root. [3]

(iii) Sketch an Argand diagram showing the points representing the roots. [1]

4 (i) Usethe substitution x = tan 6 to show that

12
J (1+—;(2)2 dx = J cos260 do. [4]
(i) Hence find the value of
1-x?
———dx 3
_I:) (1+x2)? 3]
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3
5  Thepolynomia x* + 5x + a is denoted by p(x). It is given that x* — x + 3 is afactor of p(x).
(i) Find the value of a and factorise p(x) completely. [6]

(ii) Hence state the number of real roots of the equation p(x) = 0, justifying your answer. [2]

6 (i) Provetheidentity
cos46 + 4c0s26 = 8cos* 6 — 3. [4]

(ii) Hence solve the equation
C0S460 + 4c0s20 = 2,

for 0° < 6 < 360°. [4]

7 (i) By sketching a suitable pair of graphs, show that the equation
COSECX = %x +1,
where x isin radians, hasaroot in the interval 0 < x < ir. [2]
(i) Verify, by calculation, that this root lies between 0.5 and 1. [2]
(iii) Show that thisroot also satisfies the equation

[1]

x:sin‘l(m).

(iv) Usetheiterative formula

K1 = Sm_l(xn%r 2)’

with initial value X, = 0.75, to determine this root correct to 2 decimal places. Give the result of
each iteration to 4 decimal places. [3]

8 (i) Using partia fractions, find
1
——dy. 4
Jym—w y 4

(i) Giventhat y = 1 when x = 0, solve the differential equation

dy
o = YAy,
obtaining an expression for y in terms of x. [4]
(iii) State what happens to the value of y if X becomes very large and positive. [1]
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The diagram shows part of the curvey =

x2)4(- 1 and its maximum point M. The shaded region R is
bounded by the curve and by thelinesy = 0and x = p.

(i) Calculate the x-coordinate of M. [4]
(i) Find the area of Rin terms of p. [3]
(iii) Hence calculate the value of p for which the area of R is 1, giving your answer correct to
3 significant figures. [2]
With respect to the origin O, the points A and B have position vectors given by
OR=2i+2j+k and OB=i+4j+3k.
Thelinel has vector equationr = 4i — 2j + 2k + s(i + 2j + k).
(i) Provethat thelinel does not intersect the line through A and B. [5]

(i) Find the equation of the plane containing | and the point A, giving your answer in the form
ax+by+cz =d. [6]
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